Numerical Method for solving Volterra Integral Equations with a Convolution Kernel

نویسندگان

  • Changqing Yang
  • Jianhua Hou
چکیده

This paper presents a numerical method for solving the Volterra integral equation with a convolution kernel. The integral equation was first converted to an algebraic equation using the Laplace transform, after which its numerical inversion was determined by power series. The Padé approximants were effectively used to improve the convergence rate and accuracy of the computed series. The method is described and illustrated with numerical examples. The results revealed that the method is accurate and easy to implement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

متن کامل

A simple algorithm for solving the Volterra integral equation featuring a weakly singular kernel

There are many methods for numerical solutions of integral equations. In various branches of science and engineering, chemistry and biology, and physics applications integral equation is provided by many other authors. In this paper, a simple numerical method using a fuzzy, for the numerical solution of the integral equation with the weak singular kernel is provided. Finally, by providing three...

متن کامل

A New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel ‎Method

This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...

متن کامل

Discrete Collocation Method for Solving Fredholm–Volterra Integro–Differential Equations

In this article we use discrete collocation method for solving Fredholm–Volterra integro– differential equations, because these kinds of integral equations are used in applied sciences and engineering such as models of epidemic diffusion, population dynamics, reaction–diffusion in small cells. Also the above integral equations with convolution kernel will be solved by discrete collocation metho...

متن کامل

The solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space

In this paper, to solve a linear one-dimensional Volterra  integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of  integral equation in terms of the basis functions. The examples presented in this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013